Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations

نویسندگان

  • Desmond J. Higham
  • Xuerong Mao
  • Chenggui Yuan
چکیده

Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama (EM) method fails to reproduce this behavior for any nonzero timestep. We begin by showing that EM correctly reproduces almost sure and small-moment exponential stability for sufficiently small timesteps on scalar linear SDEs. We then generalize our results to multidimensional nonlinear SDEs. We show that when the SDE obeys a linear growth condition, EM recovers almost surely exponential stability very well. Under the less restrictive condition that the drift coefficient of the SDE obeys a one-sided Lipschitz condition, where EM may break down, we show that the backward Euler method maintains almost surely exponential stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Sure Exponential Stability in the Numerical Simulation of Stochastic Differential Equations

This paper is mainly concerned with whether the almost sure exponential stability of stochastic differential equations (SDEs) is shared with that of a numerical method. Under the global Lipschitz condition, we first show that the SDE is pth moment exponentially stable (for p ∈ (0, 1)) if and only if the stochastic theta method is pth moment exponentially stable for a sufficiently small step siz...

متن کامل

Almost sure and moment exponential stability of predictor-corrector methods for stochastic differential equations

This paper deals with almost sure and moment exponential stability of a class of predictorcorrector methods applied to the stochastic differential equations of Itô-type. Stability criteria for this type of methods are derived. The methods are shown to maintain almost sure and moment exponential stability for all sufficiently small timesteps under appropriate conditions. A numerical experiment f...

متن کامل

Almost sure exponential stability of numerical solutions for stochastic delay differential equations

Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Impulsive stabilization of stochastic functional differential equations

This paper investigates impulsive stabilization of stochastic delay differential equations. Both moment and almost sure exponential stability criteria are established using the Lyapunov–Razumikhinmethod. It is shown that an unstable stochastic delay system can be successfully stabilized by impulses. The results can be easily applied to stochastic systems with arbitrarily large delays. An exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007